
D AOSII in STAPFORP UNIV CALIF DEPt OF COMPUTER SCIENCE F/s t2/iA FAST ALSORITIQ4 FOR FINDING DOPiINATORS IN A FLOW GRAPH,(U)

UNCLASSIFIED STAN—CS—fl—UI
I TARJA N N000I’4—76—C—Qfle

I
I Ic

~

I
d
~~~~~~~~~~
! _  _ 

_ _ _ _

U DATE

6 —78
DOC

I N  -,



1111) ~°
I.’ ~ ~ 2.O

18

11111’ .25 IIIIIi~ In~I~

MICROCOPY RESOLUJION TEST CHAR T
NAT ~NA( BURt AU ANL A&E ~~~~~



- , 

. 

- . -~ 

--.

f~ EAST ALGOR ITHM FOR FINDING~~OMINATORS IN A FLOW QRAPH <
~~~LI..1

‘7~
’ Jhomas/~engauer ~~~J~obert~~ndre4arJan

L _ _

COMPUT E R SCI E NCE D E PARTMENT
School of Human it ies and Sciences

STANFORD UNIVER SITY
‘/ -

~
,1~(~’ ~5F-~\c ’~-~~~~7fo

~~~~~~ ~~
-

‘~~1

~0vc I~~N/0~
~~— I —- -

I .. 
~~~~~~~~ 

- h’r:
~~~

-j
jor puL1~c re1cai~ aM s~lc

I~~~
’ ~~ atrthi..itj an is unlii njt~d.

4 ~~~~~~~ 9 
-

~~
__ _

_ _ _ _



SECURITY C L A S S I F IC A T I O N  OF THIS PAGE (lslie,, Data Entered)

I REPORT DOCUMENTAT ION PAGE BEFORE COMPLETING FORM
I. REP ORT NUMBER 2. GOVT ACCESSION NO. 3. REC$ PIENT S CATALOG NUMBER

I

4. T ITL E  (and Subt i t le)  5. TYPE OF REPORT & PERIOD COVERED

- ~\ ~~~~~~~~~
~~~~ ~~~~~~~~~~~~ ~~~~~~~~~~ ‘~~~‘~~\ 

Sb(~~~~ .~~~~~~ ~~~. ~ \ 6. PER FORMING ORG. REPORT NUMBER

C~~ ~~~~~~ C\cc~~~~. ~~
-

7. AUTHOR(s) 8. C O N T R A C T OR GRANT NUMBER(s)

T~~-~~x~ ~~~~~~~~~~~~~ ~~ ~~~ ~3t~c~
9. PERFORMING O R G A N I Z A T I O N NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJ ECT , TASK

~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ 
A R E A& W O R I~~UNIT NUMB ERS

C~~ -5’~a~~ ~~~~~~

C.4..),.jeZ~~1(t~ , ~~~~~ 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

I I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

v’ —~~~~~~ y- ~-(0~~c.k \C\1 <~
-

~
13. N U M B E R O F  PAGES

(.E P~
14 . MONITORING AGENCY NAME & A DDRE SS(I( d i f feren t fron, Cont ro l l ing  O ff i c e)  15. SECURITY CLASS. (of this report )

ISa . DECLASSIF ICAT ION/DOWNGRADING
SCHEDULE

1 5. D ISTRIB UTION STATEMENT (of thi s Report)

~~~~~~~~~~~~~~~~~~ t~.>kUu~t~ L~~~~~~ &~~ ~~~~ ~~ ~~
-)

~~ ~~~~~~~

17. DiST RIEj IO ’-~ S T A T E M E N T (of the ahst,act entered In Block 20. II differ en t from Report)

l B . S U P P L E M E N T A R Y NOTES -

19 K E Y WORDS (Conl iro,e on re vere e sIde i f noc..sary and Ident i ty by block number)

20 . ABSTRACT (ConiIn Cç,~ on revere. aid. it nec.s.ary and Identi ty by block number)

STAII_ CS_ 7R_6 5C) FAST ALGOIIITHy FOR FINDING DOMINA TORS IN A FL~~ GRAPH

Author: as Lengauer Robert E. Tarjan

This paper presents a fast algorithm for f inding dointhators in a flow graph . The
algorithm uses dep th - f i r s t search and an eff icient method of computing functions defined on
path s In trees. A simple implementation of the algorithm runs in O(m log n) time , where
it. is the number of edges and n I. the number of vertices In the problem graph. A
sophisticated implementation run s in O(m m (m ,n)) time , w h e r e m (m ,n) is a functional inverse
of Ackermann ’s funct ion. L.. ~~~~~~—I

Both versions of the algorithm were implemented in Algol W,~ .—~ 4em o~~ ...1in.1.xmzs4.t4r’--~

m d tested on an I~ 4 370/168. The programs were compared with an im

-

• plemenat lon by Purdoin and Moore of a straightforward 0(mn) -time algorithm, and with a bit
DD JAN vector algorithm ,da~cuILJ L~, AL ...J U1I._....~.. The fast algorithm beat the straighforwsrd

algorithm and the bit vecto r algor i thm on all but the smallest graphs teat.. —
8a

No. of pages: ItO

— ~~~ . .

A Fast Algorithm for Find.ing Dcmiinators

in a Flow Graph

*1Thomas Lengauer—’
Robert Endre Tarjan—’

Computer Science Department
Stanford University

Stanford, California 914305

Abstract.

Thi s paper present s a fast algorithm for finding dominators in a

flow graph. The algorithm uses depth-first search and an efficient method

of computing functions defined on paths in trees. A simple implementation

of the algorithm runs in 0(m log n) time, where in is the number of

edges and n is the number of vertices in the problem graph. A more

sophisticated implementation runs in 0(m a(m,n)) time, where a(m,n)
is a functional inverse of Ackermannt s function.

Both versions of the algorithm were implemented in Algol W, a Stanford

University version of Algol, and tested on an IBM 370/168. The programs

were compared with an implementation by Purdom and Moore of a straightforward

O(mn) -time algorithm, and with a bit vector algorithm described by Aho and

Ullinan. The fast algorithm beat the straightforward algorithm and the bit

vector algorithm on all but the smallest graphs tested.

Keywords: depth-first search, doiminators, global flow analysi s,

graph algorithm, path compression.

*1-‘ Supported by the German Academic Exchange Service.

• ~~‘This research was supported in part by National Science Foundation grant
MCS75-22870 and by Office of Naval Research contract N000114-76-C-0688.
Reproduction in whole or in part is permitted for any purpose of the
United States government.

1

•

.

- •
..•

~~ • -
•• --

~~~~~~~~

. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- . -~~~~~~~ ~

— . - . —

1. Introduction.

The following graph problem arises in the study of global flow

analysis and program optimization [2,6]. Let G = (v, E, r) be a flow

*1graph with start vertex r .—‘ A vertex v dominates another vertex

w v in G if every path fran r to w contains v . Vertex v

is the immediat e dominator of w , denoted v id.om(w) , if v

dominates w and every other dominator of w dominates v

Theorem 1 [2,6]. Every vertex of a flow graph G = (V,E,r) except r

has a unique immediate dominator. The edges [(idom(w),w) w € V-[r)}

form a directed tree rooted at r , called the dominator tree of G ,

such that v dominates w if and only if v is a proper ancestor

of w in the dominator tree. See Figures 1 and 2.

[Figure 1]

[Figure 2]

We wish to construct the dominator tree of an arbitrary flow graph G

Aho and Uliman [2] and Pu.rdom and Moore [7] describe a straig htforward

algorithm for solving thi s problem. For each vertex v r , we carry

out the following step:

General Step: Determine, by means of a search from r , the set S of

vertices reachable from r by path s which avoid v • The

vertices in V-[v)-S are exactly those which v dominates.

Krtowing the set of vertices dominated by each vertex, it is an easy matter

to construct the dominator tree.

-‘ Appendix A contains the graph-theoretic terminolo~ r used in this paper.

2

- •—- -
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ - 

~~~ ~~~~~~~~~~~~~ 
. __

To analyze the running time of this algorithm, let us assume that

G has in edges and n vertices. Each execution of the general step

requires 0(m) time, and the algorithm performs n-i executions of the

general step; thus the algorithm requires O(mn) time total.

Aho and Uliman [3] describe another simple algorithm for computing

dominators. This algorithm manipulates bit vectors of length n . Each

vertex v has a bit vector which encodes a superset of the dominators

of v . The algorithm makes several passes over the graph, updating

the bit vectors during each pass, until no further changes to the bit

vectors occur. The bit vector for each vertex v then encodes the

dominators of v

This algorithm requires 0(m) bit vector operations per pass for

0(n) passes, or O(nm) bit vector operations total. Since each bit

vector operation requires 0(n) time, the running time of the algorithm

is O(n
2m) . This bound is pessimistic, however; the constant factor

associated with the bit vector operations is very small, and on typical

graphs representing real programs the number of passes is small (on

reducible flow graphs [3] only two passes are required [14]~~.

In this paper we shall describe a faster algorithm for s3lving the

dominators problem. The algorithm uses depth-first i’earch [9] in

combination with a data structure for evaluating functions defin ed on

paths in trees [13]. We present a simple implementation of the algorithm

which runs in 0(m log n) time and a more sophisticated implementation

which runs in 0(m a(m,n)) time, where cr(m,n) Is a functional inverse

of Ackermaim’s function.

3

• - • - • -~~
-
~~-u...~~-— - ~~~ ~~~~~~~~~~~ “,~~

—
~~~~

-
~~~

—--

The algorithm is a refinement of earlier versions appearing in

[10,11,12]. ALthough proving its correctness and verifying its running

time require rather complicated analysis, the algorithm is quite simple

to program and is very fast in practice. We programmed both versions of

the algorithm in Algol W, a Stanford University version of Algol, and

tested the programs on an IBM 370/168. We compared the programs with

a transcription into Algol W of the Purdom - Moore algorithm and with

an implementation of the bit vector algorithm. On ail but the smallest

graphs tested our algorithm beat the other methods .

The paper consists of five sections. Section 2 describes the

properties of depth-first search used by the algorithm and proves

several theorems which imply the correctness of the algorithm. Some

knowledge of depth-first search as described in [9] and Section 2 of [10]

is useful for understanding this section. Section 3 develops the

algorithm, using as primitives two procedures that manipulate trees.

Section 14 discusses two implementations, simple an d. sophisticated, of

these tree manipulation primitives. Some knowledge of Sections 1, 2,

and 5 of [13] is useful for understanding this section . Section 5

presents our experimental results.

//:‘~~
‘

la~/ ‘~~
• 9/ ~~~/

/

~~~

14

— . ---- —— -- ••- 
~~~—~~~~~~ - - -—----- • z • . •~ ‘~~- -——-~~r — - ~ ” ~ • 

—
~~~~~~— — • - — —



2. Depth-First Search and Doininator s.

Suppose we perform a depth-first search on a flow graph G = (V,E,r)

starting from vertex r , and that we number the vertices of G from 1

to n as they are reached during the search. The search generates a

spann ing tree T rooted at r , with vertices numbered in preorder [5].

See Figure 3.

[Figure 3]

The following paths lemma is an important property of depth-first

search and is crucial to the correctness of the daninators algorithm.

Lemma 1 [9]. If v and w are vertices of G such that

number (v) < number(w) , then any path from v to w in G must

contain a common ancestor of v and w in T

As an intermediate step, the dominators algori thm computes a value

for each vertex w r called its semi-dominator, denoted by sdom(w)

and defined by

(1) sdan(w) = min [nwnber(v) there is a path v = v0,v1, . . .,v~ = w such

that number(v.) > number(w) for 1 < i < k-l)

See Figure 3.

The following lemmas describe some basic properties of semi-daninators

and immediate doininators.

Lemma 2. For any vertex w r , let v be the vertex such that

number(v) — sdoni(w) • Then v is a proper ancestor of w in T

5 

.—~~— -- -— - - • • ~~• 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

_ v— ~ —~— — — j r—~-—-- ~~~~~ ________________________

Proof. Let pa.rent(w) be the parent of w in T . Since (parent(w),w) is

an edge of G , by (1) number(v) = sdom (w) < nuinber(parent(w)) < nuiñber(w)

By (1) and the choice of v , there is a path v = vO,vl,...,vk = w

such that number(v.) > number(w) for 1 < i < k-l . By Lemma 1, some

vertex v1 on the path is a common ancestor of v and w . But such

a common ancestor v1 must satisfy number(v1) < number(v) . This

means i = 0 , i.e., v
~

= v , and v is a proper ancestor of w .

Lemma 3. For any vertex w r , let v be the vertex such that

number(v) = sdom(w) . Then idom(w) is an ancestor of v in T

Proof. The tree path from r to w contains only ancestors of w in T

Thus idom(w) is an ancestor of w . The path consisting of the tree

path from r to v followed by a path v = v0, v1, . . . , vk = w such that

number(v.) > number (w) for 1 < 1 < k-i (which must exist by (1))

avoids all proper descendants of v which are also proper ancestors

of w . It follows that idom(w) is an ancestor of v •

Corollary 1. For any vertex w r , id.om(w) ~ . w

Lemma 14. Let vertices v , w satisfy v ~~. w in T . Then v -‘ idc*n(w)

or idoin(w) ~~idom(v)

Proof. Let x be any proper descendant of idan(v) which is also a

proper ancestor of v . By Theorem 1 and Corollary 1, there is a path

from r to v which avoids x . By concatenating this path with the

tree path fran v to w , we obtain a path fran r to w which avoids x •

6

__________-- .~~——-.——~ - -- — . ——- •-——— —-— ~~~~~~~~~~~
-
- •

• . . • — - ~~-..~m. .’p~~~-— -.-’,._

Thus idcun(w) must be either a descendant of v or an ancestor of

idom(v) .

Using Lemmas 1 - 14, we obtain two results which provide a way to

comrute immediate doxninators from semi-daninators.

Theorem 2. Let w r and let v be the vertex such that

number(v) = sdom (w) . Suppose no vertex u satisfies

number(u) -> number(v) , u w , and sdan(u) < sdom(w) . Then

idan (w)=v.

Proof. By Lemma 3, it suffices to show that v dominates w • Consider

any path from r to w . Let x be the last vertex on this path

satisfying number (x) < nunther(v) . If there is no such x , then v = r

dominates w . Otherwise, let y be the first vertex following x on

* *the path and satisfying v - y -~ w • Al]. vertices z following x on

the path but preceeding y must satisfy z > y by Lemma 1 and the

choice of x and y • Thus sd~ n(y) < number (x) < number(v) = sdan(w)

By the hypothesis of the theorem, y cannot be a proper descendant of v

Thus y = v and v lies on the path . Since the path selected was

arbitrary, v dominates w . D

Theorem 3. Let w r and let v be the vertex such that

number(v) = sdom (w) . Let u be a vertex for which sdan(u) is minimum

among vertices satisfying number(u) > number(v) and u w . Then

sdan(u) < sdom(w) and. id.om(u) = idom (w)

7

• — - • • • - . ---f-- ~~— • - —-• .-•- ~~~~~~~~~ --- . - —• —

Proof. Let x be the vertex such that v -, x w . Then

sdan(u) < sdom (x) < nuniber(v) = sdom(w)

By Lemma 3, id.om(w) is an ancestor of v and thus a proper

ancestor of u . Thus by Lennna 14 idom(w) ~~. idom(u) . To prove

idan(u) = idom(w) , it suffices to prove that idom(u) dominates w

Consider any path from r to w . Let x be the last vertex ~~i

this path satisfying number(x) < number(idan(u)) . If there is no

such x , then idom(u) = r dominates w . Otherwise, let y be the

* *first vertex follow~ng x on the path and satisfying idoni(u) — y -. w

All vertices z following x on the path but preceding y satisfy

number(z) > ntmiber(y) by Lemma 1 and. the choice of x and y. Thus

sdom(y) < nuxnber(x) . Since number(id.om(u)) < sdom(u) by Lemma 3, we

have sdom(y) < number(x) < number(idom(u)) < sd.om(u)

By the definition of u , y cannot be a proper descendant of v

Furthermore y cannot be both a proper descendant of id.an(u) and an

ancestor of u , for if this were the case the path consisting of the

tree path from r to sdom (y) followed by a path sd.an(y) = vO,vl,...,vk =

such that number(v1) > number(y) for 1 < i < k-i followed by the tree

path from y to u would avoid idom (u) ; but no path from r to u

avoids idom(u)

The only remaining possibility is that idom(u) = y • Thus id.an(u)

lies on the path fran r to w . Since the path selected. was arbitrary,

idom (u) dominates w . 0

8

•_ - —----—-~~r__~— -_‘‘-~~~~=~ -~ —----—-_-

Corollary 2. Let w r and let v be the vertex such that

number(v) = sdan(w) . Let u be a vertex for which sdan(u) is

minimum among vertices satisfying number(u) > number(v) and u -~ w

Then

(v if sdom(w) = sdom(u)
(2) idorn(w) = (

~~idom(u) otherwise.

Proof. Immediate from Theorems 2 and 3. ~

The following theorem provides a way to compute semi-dominators.

Theorem 14. For any vertex w r ,

(3) sdcan(w) = min(Intunber(v) (v,w) c E and number (v) < number (w))

u [sdan(u) nuniber (u) > number(w) and there is

edge (v,w) such that u ~~v in T))

Proof. Let £ equal the right side of (3). We shall first prove that

sdan(w) < i . Suppose ~ = number(v) for some vertex v such that

(v,w) € E and number(v) < number (w) . By (1) sdom(w) < i . Suppose

on the other hand £ = sd.om(u) for some vertex u such that

number(u) > number(w) and there is an edge (v,w) such that u v

Let x be the vertex such that number (x) = sdom(u) . By (1) there is

a path x = ~~~~~~~~~~~~~ = u such that nuxnber (v1) > number (u) > ntunber(w)

for 1 < I < j- 1 . The tree path u = vj
-. v

j÷1
-. ... —. vk .l = v

satisfies number(v~) > number (w) > number(w) for j < I < k-i • Thus

the path x = vO,vi,...,vk i = v , = w satisfies ntmiber(v1) > number (w)

for 1 < I < k-i . By (1), sdom(w) < nuinber(x) = sdom(u) = I .

9

• -~~——.-— - -• .- • .- . - — - - - • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • • • • - - — —~~~~~

It remains for us to prove that sdom(w) > £ • Let x be the

vertex such that number(x) = sdom(w) , and let x = vO,vl,...,vk = w

be a simple path such that number(v1) > number(w) for 1 < I < k-i

If k = 1 , (x,w) € E , and number(x) < number(w) by Lemma 2. Thus

sdom(w) = number(x)
~

£ . Suppose on the other hand that k > 1

Let j be minimum such that j > 1 and v~ vk l . Such a j exists

since k-i is a candidate for j

We claim nuinber(v1) > number (v~) for 1 < i < j-1 • Suppose to

the contrary that number (v1) < number(v~) for some i in the range

1 < I < j-1 . Choose the i such that 1 < I < j-1 and number(v.)

is minimum. By Leninia 1, V
1

v~ , which contradicts the choice of j

This proves the claim.

The claim implies sdom (w) = numb er(x)
~

sdom(v.) > £ . Thus

whether k = 1 or k > 1 we have sdc*n(w)
~ £ , and the theorem is

true. 0

10

——- —- -—- -- • •--——- • --. -: -;- -—
~~

- --— —~-.—‘.~~~-~~~~ -— • ‘ r — — — - - — —
~~~ — - -—--

~~~~ --- -—


3. A Fast Daninators Algorithm.

In thi s section we develop an algorithm which uses the results in

Section 2 to find daninators. Earlier versions of the algorithm appear

in [lO,ll,12]; the version we present is refined. to the point where it is

as simple to program as the straightforward aJ.gorithm [2 ,7] or the bit vector

algorithm [3, 14], similar in speed on sinai]. graphs, and much faster on large graphs.

The algorithm consists of the following f our steps.

Step 1. Carry out a depth-first search of the problem graph. Number

the vertices from 1 to n as they are reached during the

search. For each vertex w , determine the set ~~~~~ w) of

vertices v such that (v,w) is an edge and the vertex

parent(w) which is the parent of w in the spanning tree

generated by the search. Initialize the variables used In

succeeding steps.

Step 2. Compute the semi-dominators of all vertices by applying Theorem 14.

Carry out the computation vertex-by-vertex in decreasing order

by number.

Step 3. Implicitly define the immediate dominator of each vertex by

applying Corollary 2.

Step 14. E~cplicit1y define the immediate dominator of each vertex, carrying

out the computation vertex-by-vertex in increasing order by

number.

Here is an Algol-like version of Step 1.

stepi : n := 0;

for each v € V do ~~~9 (v) := 0; senui (v) = 0 od;
r~w _ — 1W

DFS(r);

U

• — - - — -~~ -- - - - ~~~~ ~~ —
•

-

Step 1 uses the recursive procedure DFS, defined below, to carry

out the depth-first search. The procedure assumes that succ(v) is

the set of vertices w such that (v,w) c E • When a vertex v receives

a number I , the procedure assigns semi (v) := i and vertex (i) := v

procedure DFS(vertex v) ;

begin

semi(v) := n := n+l;

vertex(n) := v;
comment initialize variables for steps 2, 3, and 14;
for each w € succ (v) do

if semi (w) = 0 then parent(w) := v; DFS(w) fi;
1W 1W

add v to ~~~~~w) od
end DFS;

After carrying out Step 1, the algorithm carries out Steps 2 and 3

simultaneously, processing the vertices v r in decreasing order by number.

When processing a vertex v , the algorithm computes sdom (v) by applying

Theorem 14. Each edge (u,v) is examined. If number(u) < number(v) ,

number(u) is a candidate for sdoni(v) . If nuinber(u) > number(v) , the

algorithm finds a vertex x of minimum sd.om(x) among vertices satisfying

number (x) > number(v) and x ~.u ; sdoin(x) is a candidate for

sdom(v) . The minimum of all the candidates is sdom(v) . After

computing sdom (v) , the algorithm assigns semi(v) := sdom(v) and adds

vertex v to the set bucket(u) , where u is the vertex such that

number(u) = sdom(v) . This completes Step 2 for v • Note that before

sdom(v) is found, semi (v) = number(v) , and after sdan(v) is found,

semi (v) = sdom(v) .

12

- - - •-- -— - -~~•• -~~~~~~~

After the semi-dominator of v is computed, the algorithm empties

bucket (parent (v)) . For each vertex w € bucket (parent (v)) , the algorithm

finds a vertex u of minimum sdom(u) among vertices satisfying

number(u) > ntmiber(parent(v)) and U -.w . If sdom(u) = sdom(w) ,

then by Corollary 2 the immediate dominator of w is parent (v) , and

the algorithm assigns dom(w) : parent (v) . If sdom(u) < sdom(w) ,

then by Corollary 2, u and w have the same immediate dominator, and

the algorithm assigns dom (w) := u . The intent of this assignment

is to implicitly define the immediate dominator of w to be the

immediate dominator of a vertex with smaller semi-dominator than w

This completes Step 3 for vertices w€bucket (parent (v))
• *Both Step 2 and Step 3 require determining, for certain paths v -

~ w

*in the spanning tree, a vertex u on the path v — w having minimum

sdom(u) . To find such vertices the algorithm uses a method described

in [10]. The algorithm maintains a data structure which represents a

forest with vertex set V and edge set [(parent(v), v) sdan(v) has been

computed) • To manipulate this data structure, the algorithm uses two

procedures:

LINK(v ,w) : Add edge (v,w) to the forest.

EVAL(v) : If v is the root of a tree in the forest, r~~urn v

Otherwise, let r be the root of the tree in the forest

which contains v . Return a vertex u r of minimum

sdom(u) on the path r — v in the forest.

13

• -—— - ..— -
- _ _

~~~~~
_ _ _ _ _ — 

~ _ r ~~ ~~~~~~~ 
- — ‘ _. .



Here is an Algol-like version of Steps 2 and 3 which uses LINK

and EVAL.

comment initialize variables;

for i : = n by -l until 2 do

v := vertex(i);

step2: for each u € ~~~~~ (v) do

x := EVAL(u) ; if selni(x) < semi(v) then semi (v) semi(x) od;

LINK(parent (v), v) ;
add v to bucket (vertex(seini(v));

step3 : for each w€bucket (par ent (v) ) do

delete w from bucket (p~~~nt ( v ) ) ;

U := EVAL(w) ;

dom (w) := if semi (u) < s~ ni(parent (v)) then u

else parent(v) 
~~~~~~~~~

Step 14 examines vertices in increaaing order by number, filling in

the immediate dominat ors not explicitly computed by Step 3. Here is an

Algol-like version of Step ii.

step 14: for i := 2 until n do
— 1W

v := vertex(i);

if dom(v) ~ vertex(semi(v)) then dan(v) := dom(dan(v)) od;
1W — — — — 1W

This completes our presentation of the algorithm except for the

implementation of LINK and EVAL. Figure 14 illustrates how the algorithm

works.

[Figure 14]

Appendix B contains a complete Algol-like version of the algorithm,

including variable declarations and initialization. Using Theorem 1i~ and

Corollary 2 it is not hard to prove that, after execution of the algorithm,

114

~

___ -r - - ~~~~~~
- ~-S -— -

~— - . ~__ .• — —

dan(v) = idom(v) for each vertex v r , assuming that LINK and EVAL

perform as claimed. The running time of the algorithm is 0(m1-n)

• plus time for n-i LINK and m+n-i EVAL instructions.

15

~ T~ r TT~ - ~~~~~~~~~~~~~~
- - -

14. Implementation of LINX and EVAL.

Reference [131 provides two ways to implement LINK and EVAL, one

simple and one sophisticated. We shall not discuss the details of these

methods here, but merely provide Algol-like implementations of Lfl’1X and

EVAL which are adapted from [131.

The simple method uses path compression to carry out EVAL. To

represent the forest built by the LI1~X instructions (henceforth called

the forest), the algorithm uses two arrays, ancestor and label.

Initially ancestor(v) = 0 and iabel(v) = v for each vertex v

In general ancestor(v) = 0 only if v is a tree root in the forest ;

otherwise ancestor(v) is an ancestor of v in the forest.

The algorithm maintains the labels so that they satisfy the following

property. Let v be any vertex, let r be the root of the tree in

the forest containing v , and let v = ~~~~~~~~~~~~~~ = r be such

that ancestor (v.) = v . 1 for 1 < I < k . Let x be a vertex such

that sdom(x) is minimum among vertices x € [label(v
~
) 1 < i < k)

Then

(*) x is a vertex such that sdcin(x) is minimum among vertices x
+ *satisfying r — x -‘ v in the forest .

To carry out LINK(v,w) , the algorithm assigns ancestor (w) := v

To carry out EVAL(v) , the algorithm follows ancestor pointers to

determine the sequence v = vk,vk 1,..., v0 = r such that

axicestor(v1) = v~~1 for 1 < i < k . If v = r , v is returned.

Otherwise, the algorithm performs a path compression by assigning

ancestor (v1) := r for z < i < k , updating labels to maintain (*) .

Then label(v) is returned. Here is an Algol-like procedure for EVAL.

16

_L*

~

- -
~~~~~~~~~~~~~~~~~~~~~ — --•r—~

•
~
-—• 

~~
‘ —  - .• —



vertex procedure EVAL(v);

if ancestor (v) = 0 then EVAL := V

else COMPRESS (v) ; EVAL : = label (v) fi;  -

Recursive procedure COMPRESS, which carries out the path compression,

is defined by

procedure CCMPRESS(v) ;

comment this procedure assumes ancestor (v) ~ 0;
if ancestor(ancestor(v)) ~ 0 then

COMPRESS(ancestor(v)) ;

if semi(label ( ancestor(v))) < semi (iabel(v) ) then

label(v) := label(sncestor(v)) fi;

ancestor(v) := ancestor(ancestor(v)) fi;

The time required for n-i LINKs and m*n-l EVALs using this

implementation is O(m log n) [13]. Thus the simple version of the

dominators algorithm requires O(m log n) time.

The sophisticated method uses path compression to carry out the

EVAL instructions but implements the LINK instruction so that path

compression is carried out only on balanced trees. See [13]. The

sophisticated method requires two additional arrays, size and child.

Initially size(v) = 1 and child(v) = o for all vertices v . Here

are Algol-like implementations of EVAL and LINK using the sophisticated

method. These procedures are adapted from [13).

i7

~~T~ ii - 

~~~~~~~~~~~~ 
-- ~~~~~s’ -

-

vertex procedure EVAL(v) ;
comment procedure CC~v1PRESS used here is identical to that in the

simple method;

if ancestor(v) = 0 then EVAL := label(v)

else COMPRESS(v) ;
EVAL := if semi(labei(ancestor(v))) > seini(label(v)) then label(v)

0W -

else label(ancestor(v)) ft fi ;
1W 1W

~~~~~~~~~~~~~~~~~~~~~~~ LINK (v, w);
begin

comment this procedure assumes for convenience that

size(O) = label(0) = senii(O) = 0;
S = w;
while semi (label(w) ) < semi (label(child(s))) do

if size(s)-f size(child(child(s))) � 2* size(child(s)) then

parent(child(s)) := 5; child(s) := child(child(s))

else size(child(s)) := s i z e ( s );
s := parent(s) := child(s) fi od;

label(s) := label(w);

size(v) := si ze ( v )+ sl ze (w ) ;

if size(v) < 2* size(w) then s,child(v) := child(v),s fi;

while s ~ 0 do parent (s) := v; s := child(s) od
1W 1W

end LINK;

With this implementation, the time required for ~-i LINKs and ni+n-1

EVALs is O(m a(m,n ) )  , where a is a functional inverse of Ackermann’s

function [1], defined as follows. For integers i,j > 0 , let A(i,O) = 0

if I > 0 , A(O,j) 2’~ if j >1 , A(i,l) A(i-1,2) if I > 1 ,

and A(i,j) = A(i-l,A (i,j-1)) if I >1 , j > 2 , Then

a(m,n) = min (i > 1 A (i, L2m/nJ ) ‘ 1O€2 n } * Thus the sophisticated

version of the dominators algorithm requires O(m cx(m,n)) time.

— -~~ ‘ -r- - — - - - - —



5.  Implementation and E~cperimenta1 Results.

We translated both versions of the algorithm as contained in

Appendix B into Algol W and ran the programs on a series of randomly

generated program flow graphs. Table 1 and Figures 5 and 6 illustrate

the results. The sophisticated version beat the simple version on all

graph s tested. The relative difference in speed was between 5 and 25%,

increasing with increasing ii

[Table 1]

[Figure 5]

[Figure 6]

We transcribed the Purdom - Moore algorithm into Algol W and ran it

and the sophisticated version of our algorithm on another series of

program flow graphs. Table 2 and Figure 7 show the results. Our algorithm

was faster on all graphs tested except those with n = 8 • The

Purdom - Moore algorithm rapidly became non-competitive as n increased.

The trade-off point was about n = 10

[Table 2]

[Figure 7]

we implemented the bit vector algorithm using a set of procedures

for manipulating multi-precision bit vectors. (Algol W allows bit vectors

only of length 32 or less.) Table 3 gives the running time of this

algorithm on the second series of test graphs, and Figure 8 compares the

running times of the bit vector algorithm and the sophisticated version

of our algorithm. The speed of the bit vector algorithm varied depending

upon the number of passes required., but it was always slower than the

fast algorithm.

19 

—-
~~ 

- - . -— ~~~~~~~~~~~ —~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
;— 

~
- -

~~ 
- -- - - — -

~~~ 
- - -

~
-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



[Table 3]

[ Figure 8]

There are several ways in which the bit vector algorithm can be made

more competitive. First, the bit vector procedures can be inserted

in-line to save the overhead of procedure calls. We made this change and

observed a 33 - 145% speed-up. The corresponding change in the fast

algorithm, inserting LINK and EVAL in-line, produced a 20% speed-up.

These changes made the bit vector algorithm almost as fast as our algorithm

on graphs of less than 32 vertices, but on larger graphs the bit vector

algorithm remained substantially slower than our algorithm. See Table 1,

Table 14, and Figure 9.

[Table 14 ]

[Figure 9]

Second, the bit vector procedures can be written in assembly language.

To provide a fair comparison with the fast algorithm it would be necessary

to write LINK and EVAL in assembly language. We did not try this approach,

but we believe that the fast algorithm would still beat the bit vector

algorithm on graphs of moderate size.

Third, use of the bit vector algorithm can be restricted to graph s

known to be reducible. On a reducible graph only one pass of the bit

vector algorithm is necessary, because the only purpose served by the

second pass is to prove that the bit vectors don’t change, a fact

guaranteed by the reducibility of the graph. We believe that a one-pass

in-line bit vector algorithm would be compet it iv ~ with the fast algorithm

on reducible graphs of moderate size, but only if one ignores the time

needed to test reducibility.

20

- - - - - 

~
-: ~~~~~~~~ - -~------ L~~~~~~~~~ ’ - - - - 

~~~~~~~~~~~~ ~~~~~~~~~~~~ ~~— - -
- - ~~~~~~~~~

The bit vector algorithm has two disadvantages not possessed by the

fast algorithm. First, it requires 0(n 2) storage, which may be

prohibitive for large values of n . Second, the dominator tree, not

• the dominator relation, is required for many kinds of global flow analysis

[8, 114], but the bit vector algorithm computes only the dominator relat ion.

Computing the relation fr om the tree is easy, requiring constant time per

element of the relation or 0(n) bit vector operations total. However,

computing the tree from bit vectors encoding the relation requires 0(n2)

time in the worst case.

We can summarize the good and bad points of the three algorithms as

follows: the Purdom - Moore algorithm is easy to explain and easy to

program but slow on all but small graphs. The bit vector algorithm is

equally easy to explain and program, faster than the Purdom - Moore algorithm,

but not competitive in speed with the fast algorithm unless it is run on

small graphs which are reducible or almost reducible. The fast algorithm

is much harder to prove correct but almost as easy to program as the other

two algorithms, competitive in speed on small graphs, and much faster on

large graphs. We favor some version of the fast algorithm for practical

appli cations.

We conclude with a few comments on ways to improve the efficiency of

the fast algorithm. One can speed up the algorithm by rewriting DFS and

COMPRESS as non-recursive procedures which use explicit stacks . One can

avoid using an auxiliary stack for COMPRESS by instead using a trick of

reversing ancestor pointers; see [12]. A similar trick allows one to avoid

the use of an auxiliary stack for DFS. One can save some additional storage

by combining certain arrays , such as parent and ancestor. These modifications

save runn ing time and storage space, but only at the expense of program clarity.

21

— —— — — ------—-—--- - - — - — - - - - --- --.——~~ -----•-.—--.-——-——.—. w~~ --—- — ——•-—--—-•-‘-
~_ ~r— - - - - - -

~~~
— -

~ ~~~~
- — — ‘

~~~~~
.. .

Appendix A: Graph-Theoretic Terminolo~~r.

A directed graph G = (V,E) consists of a finite set V of

vertices and a set E of ordered pairs (v,w) of distinct vertices,

called edges. If (v,w) is an edge, w is a successor of v and v

is a predecessor of w • A graph G1 = (v1,E1) is a subgraph of G

if V1 c V and E~ c E . A
~~~~~~~~~~~ 

p of length k from v to w

in G is a sequence of vertices p = (v = ~~~~~~~~~~ = w) such that

(v
~,v~+i ) c E  for 0 < i < k . The path is simple if v0, . . are

distinct (except possibly v0 = Vk ) and the path is a cycle if v0 = Vk

By convention there is a path of no edges from every vertex to itself

but a cycle must contain at least two edges. A graph is acyclic If it

contains no cycles. If p1 = (u = u0,u1,...,u,~ = v) is a path from u

to v and p = (v = v0, v1,..., v 1 = w) is a path from v to w , the

path p1 followed by p2 is p - (u = u0,u~, . . .,u~ = V = v0,v1, . . .,v
1 = w) .

A flow graph G = (V,E,r) is a directed graph (v,E) with a

distinguished start vertex r such that for any vertex v € V  there is

a path from r to v • A program flow graph is a flow graph such that

each vertex has exactly two successors. A (directed, rooted) tree

T = (V, E, r) is a flow graph such that I E I  = IV I-1  . The start vertex

r is the root of the tree. Any tree is acyclic, and if v is any - vertex

in a tree T , there is a unique path from r to v • If v and w

are vertices in a tree T and there is a path from v to w , then v is

*
an ancestor of w and w is a descendant of v (denoted by v — w ) .  If

in addition v w , then v is a proper ancestor of w and w is a

+ *proper descendant of v (denoted by v -.w ). If v -.w and (v,w)

is an edge of T (denoted by v — w ) ,  then v is the parent of w

and w Ic a child of v • In a tree each vertex has a unique parent

22 

--  I - -
~~

-
~

—
~~~~ ~ 1~~_~~ ~~~~~~~~~~~~~~~~~~~~ ~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- - ~~~~~~~~~~~~~~~~~~~~


(cxcept the root , which has no parent). If G = (V, E) is a graph

and T = (V’,E’,r) is a tree such that (V’,E’) is a subgraph of G

and V = V’ , then T is a spanning tree of G

23

-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ i~

_
~~~

_ --
~~~~~~~~~~~

- 
~~- 

- - -



Appendix B: The Complete Dominators Algorithm.

This appendix contains a complete listing of both versions of the

dominators algorithm. The algorithm assumes that the vertex set of the

problem graph is V =  [v~~l < v < n )

procedure DOMINATORS(integer set array succ(l::n); integer r,n;

integer array dom(1::n));

begin

int eger array parent, ancestor, [ child, ]  vertex ( l : : n ) ;

integer array label, semi [,size] (O::n);
w__ w~w - -
integer set array pred, bucket (l::n);

integer u,v,x;

procedure DFS(integer v);r W~~~r~~~~~~

semi (v) := n := n+l;

vertex(n) := label(v) := v;

ancestor (v) := [child(v) :=] 0;

[size(v) := 1;]

for each W E  succ(v) do

if semi (w) = 0 then parent(w) := v; DFS(w) fi;

add v to ~~~~(w) od
end DFS;

procedure COMPRESS(integer v) ;
if ancestor(ancestor (v)) ~ 0 then

C OMPRESS (ancestor(v));

if semi (iabel(ancestor(v))) < semi(label(v)) then
0W __

label(v) := label(ancestor (v)) fi;

ancestor(v) := ancestor(ancestor(v)) fi;

integer procedure EVAL(integer v ) ;

if ancestor(v) = 0 then EVAL := v
1W

else COMPRESS (v); EVAL : = label (v) fi;

214

—•.———--.-—.~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ 
_
~~~~~~~~~~~~~~~~ -.-—-— -.---__ __ j..__ - -_ . - — -_ - - ~~~~

_ -. — - -

~~~~~~~ 
-
~~~~~

—
~~~~~

— - -
~~~~~

-=-
~~

--‘-— —
~~~ 

--—------—-— —



procedure LINK(integer v,w);

ancestor(w) := v;

step l: for v := 1 until n do

pred(v) : bucket (v) := ~ ; semi (v) : 0 od;
n := O;

DFS(r);

[size(O) := label(O) := semi(O) := 0;]

for i := n by -1 until 2 do
1W rS~~~~~~~~~~ 1W

v := vertex(i);
step2: for each u € ~~~~~v) do

x := EVAL (u); if semi(x) < semi(v) then semi(v) := semi (x) od;
1W — — 1W

LINK(parent(v),v);

add v to bucket (vertex (semi(v)));

step3: for each w E bucket (parent (v)) do
delete w from bucket(parent (v));
u := EVAL(w) ;
dom (w) := if semi(u) < semi (parent (v) ) then u

else parent(v) fi od od;

step 14: i := 2 until n do 
-

v := vertex(i);

if dom(v) ~ vertex(semi (v) ) then dom(v) := dom(dom(v)) od

end DOMINIATORS;

The simple version of the algorithm consists cf the procedure above,

with everything in brackets deleted. The sophisticated version of the

algorithm consists of the procedure above, with everything in brackets

included, and the following procedures substituted for EVAL and LINK.

integer procedure EVAL (integer v);— —if ancestor(v) = 0 then EVAJJ := label(v)
1W

else COMPRESS(v);

EVAL := if semi(label(ancestor(v))) ?~~~~~ 
(]~abel (v))  then label(v)

else label(ancestor(v) ) ft fi;
0W 0W

25

—-— _ —— -- -  — — — - - - - — — -— 

~~

- - - - 
~ ~~

- - —



procedure Lfl~TK(integer v,w);

begin integer s;

s :=

while seini (label (w) ) < semi(labeJ-(child(S))) do
— 0W

if size(s)÷size(child(child(s))) >2
* size(child(s)) then

ancestor(child(s)) : s; child(s) := child(child(s))

else ~ize(child(s)) := size(s);

ancestor(s) := child(s) fi od ;

label(s) := label(w) ;

size(v) := size(v) + size(w) ;

if size(v) < 2* size(w) then s,child(v) := child(v), s f i ;
0W — — 1W

while s ~ 0 do ancestor(s) := v; s := child(s) od
—~ 1W 

0W

end LINK;

26

/
_ _ _ _- - -_

~-a~~_;.~~e —— ~~~~~ - _ -~~ _________________________• — - - —



References

11] W. Ackermann, “ Zum Hilbertschen Aufbau der reellen Zahlen,” Math.

Ann. 99 (1928), 118-133.
[2] A. V. Aho and J. D. Ullrnan, ~‘he Theory of Parsing, Translation, and

Compiling: Volume II: Compiling, i rentice-Hall, Englewood C l i f f s ,

N.J. (1972).

[3] A. V. Aho and J. D. Uliman, Principles of Compiler Desi&n, Addison-

Wesley, Reading, Mass. (1977).
[)~] M. S. Hecht and J. D. IJUman, ‘A simple algorithm for global data

flow analysis problems,” 6ipJ~ J. Coinput. 14 (1973), 519-532.
[ 5 ]  D. E. Knuth, The Art of Computer Programming, Volume 1: Fundamental

Algorithms, Addison-Wesley, Reading, Mass., 1968.

[6] E. S. Lorry and C. W. Medlock, “Object code optimization, ”

Communications ACM 12 (1969), 13-22.
• [7] 1. W. Purdom and E. F. Moore, “Algorithm 1430: immediate predominators

in a directed graph,” Communications ACM 15 (1972), 777-778.
[8] J. Reif , “Combinatorial aspects of synibolic program analysi s, ” TR-11-77,

Center for Research in Computing Techno1o~~r, Harvard university (1977).

[9] R. E. Tarjan, “Depth-first search and linear graph algorithms,”
SIAM J. Computing 1 (1972), 1146-160.

[101 R. Tarjan, “Finding dominators in directed graphs,” SIAM J. Computing

3 (1974), 62-89.
[11] R. E. Tar j an, “ Edge-disjoint spanning trees, dominators, and depth-

first search, ” Technical Report STAN-CS-714-1455, Computer Science

Department, Stanford university (19714).

[12] R. E. Tarjan, “Applications of path compression on balanced trees,”

Technical Report STAN-CS-75 -512, Computer Science Department,

Stanford university (1975).

[133 R. E. Tarjan, “Applications of path compression on balanced trees,”
Journal ACM, submitted.

[114] R. E. Tarjan, “Solving path problems on directed graphs,” Technical

Report STAN-CS-528, Computer Science Department, Stanford university

I 
(1975).

27

—S 

— - .— - -----— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



R

B C

A

G

D E F

L J

H I

K

Figure 1. A flow graph.

28

j
•-•• -—.,--—----- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ - 

__



K C E A D B

F G

J

Figure 2. Dominator tree of flow graph in Figure 1.

29

_ : ~~~~ i~—~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ 
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
— — -

—

V ~~~~~~~~~~~
/ / N

/ /
(~
1’(2,l) (8,i)

’
~~~) \

/ 
/~~~~~~~\

/
1

~~

J(3

~

2) 
$

~~~(6~2) ~Ø(9~l) 
\

(11,1)

/

(14,l)
~~~~~

_ — — 
_
~~~(7,6) ~~~~~~lO,1) (12,8)

I —

\ ‘ I
\~~~

, —

(5, 1)(~~~
Y

~~~~ 

L (13,12)

Figure 3. Depth-first search of flow gra~ii in Figure 1.

Solid edges are spanning tree edges, dashed edges are

non-tree edges.

First number in parentheses is vertex number, second

is semi-dominator.

30 

—-- ~~—
‘
~ - 

~~~~~~~~~~~~~~~~~~~~~~~~ 
-‘ ‘- —a,-,--- - --

B (8,-) B (8,-)

(11,1) A (11,1)

I
(12, 8) (

~
) (12,8)

~~~~(lo,l) j ,
(
~ 

(13,12) (i3,l~ )

(a) (b)

-)

g~~
,l) “

~t~
) (11,1)

~~~~(lo,l) D (12,8)

(
~
) (13,12)

(c)

Figure 11. Forest maintained by LINK and EVAL during steps 2 and 3 of the
dominators algorithm. (Trees in the forest consisting of

single vertices are not shown.)

(a) Before vertex H is processed. Candidates for sdom(H)
are 9 = number (E) and 1 = inin[sdcin(v) B ~ . v ~ L)

(b) Before vertex E is processed. Candidates for sdom(E)

are 8 = nuinber(B) and 1 = inin(sdom (v) E V -. H)

After sdom(E) = 3. is computed, bucket(B) is unloaded.

At this time D is the only element of bucket(B)

A is the vertex sucl-x that sdan(A) = min[sdom(v) B ~ . A -. D)
Since sdom (A) = 1 < sdc~n(D) = 8, dan(D) is assigned
dom (D) := A • Note that idom(D) = idom(A) = R •

(c) After E is processed.

3].

—-— ~~ r~~-- —~~~ - --
-
~~~~~~~~~ -~~~~

‘--_—



30

25 -

Time 

~~~~ 

;histicated

Figure 5. Running times in ~Q 3 seconds of the simple and sophisticated
versions of the fast algorithm.

32

~~~~~~~~~~~~~ -
-

. -- . - -- -  -_—- •—-— — 1_ -f-_.•- 
~~
- - ‘  - - -  -.~~~~~~~~~~~~~ _ _ ~ .- .— --—-- -



300

250 - 
/

200

150 -

simple
Time

100 -

sophisticated

50

0
0 100 200 300 1400 500 600 700 800 900 1000

n

Figure 6. Running t imes in lO~~ seconds of the simple and
sophisticated versions of the fast algorithm.

S

33

1— —- — — — —-—-- —--~~--—.—---
~
-
~~~i 

__ -1 —- - ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ r..=- —~~~—-—--~~
— ——-

/ :
Time

140 -

30 .

Purdom - Moore

20 -

: O 2
’
O 3 ~~~~~~~~~~~0 5 ~~~~~~~~~~~~

Figure 7. Running times in lO~~ seconds of the Purdom-Moore algorithm

and the sophisticated version of the fast algorithm.

311-

1_

90-
14 passes

8o

,
,
,/
/

Time

h

/

~~~~~ s se s

3 passes

/
I

/
3 C - /

bit vector 
14
”
passes

20 

14 passe ~ ,/ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

1:

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

0 20 140 60 80 100 120 1140
n

FIgure 8. Running times in i0 3 second s of the bit vector algorithm and
the sophisticated version of the fast algorithm.

35
______-- - 

_____- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ — ~~~~~~~~~~~~~~~~~~~~~~~~~~ - r ‘~~~~ - ~~~~~~~~~~~~~~~~


70

60 lj. passes

I
l
l

?

/2 passes

3 passes:: ~~~

O

~~~~~~~~~~~~~~~~~~~~~~~~~ sophisticated

O 20 140 60 80 100 120 1140

Figure 9. Running times in l0~~ seconds of the in-line bit vector
algorithm and the in-line sophisticated version of the - - 

-

fast algori t hm .

36

- 
~~~~~~~~~~~~~~~~~~ f: ~‘ - - — — ---~- ---~~~~ ---, — - _________


simple sophisticated simple sophisticated

n mm max mm max n mm max m m max

10 2.0 2.1 1.9 2.0 200 146.14. 147.2 36.2 36.14
20 li.3 14•14 3.7 3.9 300 70.1 72.3 55.0 55~7
30 6.2 6.8 5.5 5.8 1400 98.5 101 711.7 78.1

8.,o 8.8 7.1 7.6 500 123 125 92.0 93.7
50 10.5 11.14 8.9 9.6 600 150 152 110 120

60 12.14 13.14 10.9 11.6 700 176 181 130 137

70 114.6 15.14 12.6 13.1 800 2114. 217 158 167

8o 17.14 18.6 114.5 15.6 900 238 21414 173 188
90 20.0 20.2 16.7 lr .8 1000 263 268 192 206

100 ~22.14 22.7 18.o 19.3

Table 1. Running times in l0~~ seconds of the simple and sophisticated
versions of the fast algorithm (three graphs for each value

of n).

37

— ~—— - -
-
-. -~~~~~~~~~~~~ —- ~~~~~~~ - - - - ~~ ~~~~~~

- - - - -
~~~~~~~~~~~~~~~~~~~ —



in-line
sophisticated sophisticated Purdom-Moore

n mm max mi.n max mm max

8 1.7 1.7 1.li. 1.5 1.3 1.14

16 3.0 3.2 2.5 2.6 14.6 14.7

211~ 14-.1-i- 14.5 3.6 3,7 10.1 10.3

32 5.8 6.1 14.7 14.8 i8.14 18.6

7.14 7.6 6.o 6.1 29.14- 29.6

148 8.8 9.2 7.0 7.14- 14-o.8 142.5

56 10 U 8.o 8.8 56.5 58.2
614 12 13 9.3 10.0 714.3 75.5

72 13.2 13.8 10.3 10.9

80 114.9 15.1 11.8 12.0

88 16.5 17.14- 13.0 13.9

96 17.7 17.9 114.0 114.5

1014 19.3 20.11- 15.14

112 19.9 20.6 15.9 16.7

120 22.3 23.14 17.7 19.0

128 23.5 23.8 18.7 19.2

Table 2. Running times in lO~~ seconds of the Purdom-Moore algorithm

and the sophisticated version of the fast algorithm (three

graphs for each value of n ).

38

—~~~~ ---‘A- Si~~



bit vector

n time passes time passes time passes

8 3.2 3 3.11- 3 3.11- 3
16 6.3 3 6.3 3 6.11. 3
214 9.3 3 9)-i- 3 9.5 3
32 12.14 3 12.11 3 15.7 Ii-

140 12.8 2 12.9 2 17.3 3
148 20.9 3 20.9 3 21.0 3 -

56 21~.3 3 21i-.3 3 214.3 3
614. 27.9 3 28.2 3 28.2 3
72 25.6 2 35.1 3 35.5 3
8o 28.6 2 39.2 3 39.6 3
88 143.7 3 11~3.8 3 14li..l 3
96 11-6.6 3 14-7.7 3 147.7 3

1014 140.6 2 14~1.O 2 56.0 3
112 11.3.9 2 143.9 2 61.3 3
120 65.9 3 66.0 3 66.6 3
128 70.5 3 71.3 3 91.5 11-

Table 3. Running times in 1O~~ seconds and number of passes
of the bit vector algorithm (three graphs for each

value of n ) .

39

__________________ -- - - - - 9  - . 
~

- ~~~~~~~~~~~~~~~ 
-- -- 

- ~~~~~~~~~~~~ 
-



r

in-line bit vector
S

n time passes time passes time - passes

8 1.8 3 1.8 3 1.9 3
16 3.3 3 3)-i- 3 3.14 3

21-i- li.9 3 5.0 3 5.1 3

32 6. 1- 3 6.5 3 7.9 14
140 7.7 2 7.7 2 10.1 3

1i-8 12.1 3 12.2 3 12. li 3
56 114.2 3 114.2 3 111.2 3
(14 16.1 3 16.3 3 1€~.3 3

72 16.8 2 22. 11 3 22.7 3
80 18.14 2 214.7 3 211.8 3
88 27.1 3 27.5 3 27.8 3
96 29.5 3 29.6 3 29.8 3

104 27.1 2 27.2 2 38.1 3
112 30. 1k 2 30.8 2 14-1.5 3
120 1414.0 3 14 14.1 3 1414.3 3
128 11-6.~ 3 146.9 3 60.6 14

Table 14. Running times in ~~~~ seconds and number of passes

of the in-line bit vector algorithm (three graphs for

each value of n ).

140

- - ---— ___— -.-
~~~
-

~~~-1~~ ~~~~~~~~~~~~~~~~~~~ —--
~~ - •- — -


